On variational downscaling, fusion, and assimilation of hydrometeorological states: A unified framework via regularization
نویسندگان
چکیده
Improved estimation of hydro-meteorological states from downsampled observations and background model forecasts in a noisy environment, has been a subject of growing research in the past decades. Here, we introduce a unified variational framework that ties together the problems of downscaling, data fusion and data assimilation as ill-posed inverse problems. This framework seeks solutions beyond the classic least squares estimation paradigms by imposing a proper regularization, expressed as a constraint consistent with the degree of smoothness and/or probabilistic structure of the underlying state. We review relevant smoothing norm regularization methods in derivative space and extend classic formulations of the aforementioned problems with particular emphasis on land surface hydro-meteorological applications. Our results demonstrate that proper regularization of downscaling, data fusion, and data assimilation problems can lead to more accurate and stable recovery of the underlying non-Gaussian state of interest with improved performance in capturing isolated and jump singularities. In particular, we show that Huber regularization in the derivative space offers advantages, compared to the classic solution and Tikhonov regularization, for spatial downscaling and fusion of non-Gaussian multi-sensor precipitation data. Furthermore, we explore the use of Huber regularization in a variational data assimilation experiment while the initial state of interest exhibits jump discontinuities and non-Gaussian probabilistic structure. To this end, we focus on the heat equation motivated by its fundamental application in the study of land surface heat and mass fluxes. D R A F T May 9, 2013, 6:31pm D R A F T EBTEHAJ & FOUFOULA-GEORGIOU: REGULARIZED DOWNSCALING, FUSION AND ASSIMILATION X 3
منابع مشابه
Downscaling Satellite Precipitation with Emphasis on Extremes: A Variational ‘1-Norm Regularization in the Derivative Domain
The increasing availability of precipitation observations from space, e.g., from the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can handle large data sets in computationally efficient ways while optimally reproducing desired pro...
متن کاملDownscaling satellite precipitation with emphasis on extremes : A 1 Variational ` 1 - norm regularization in the derivative domain
The increasing availability of precipitation observations from space, e.g., from the Tropical Rain7 fall Measuring Mission (TRMM) and the forthcoming Global Precipitation Measuring (GPM) mission, has 8 fueled renewed interest in developing frameworks for downscaling and multi-sensor data fusion that can 9 handle large data sets in computationally efficient ways while optimally reproducing desir...
متن کاملAn inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملImage Fusion and Registration – a Variational Approach
Image fusion or registration is central to many challenges in medical imaging today and has a vast range of applications. The purpose of this paper is to give an introduction to intensity based non-linear registration and fusion problems from a variational point of view. To do so, we review some of the most promising non-linear registration strategies currently used in medical imaging and show ...
متن کاملWasserstein Regularization of Imaging Problems
This paper introduces a novel and generic framework embedding statistical constraints for variational problems. We resort to the theory of Monge-Kantorovich optimal mass transport to define penalty terms depending on statistics from images. To cope with the computation time issue of the corresponding Wasserstein distances involved in this approach, we propose an approximate variational formulat...
متن کامل